CO₂, Feuchte und Temperatur Messumformer für Kanalmontage

AL-IAQ850

Der AL-IAQ850 vereint CO_2 , relative Feuchte (rel. F.) und Temperatur (T) in einem innovtiven Gehäuss. Das Geräte ist ideal für die bedarfsgesteuerte Lüftung und Gebäudeautomation. Durch den CO_2 Messbereich bis 10.000 ppm und einen Temperatur-Arbeitsbereich von -20...60 °C bietet sich der AL-IAQ850 auch für anspruchsvolle Klima- und Prozesssterungsaufgaben an.

Langzeitstabilität

Aufgrund des NDIR-Zweistrahlverfahrens ist der CO₂-Sensor des AL-IAQ850 besonders unempfindlich gegen Verschmutzungen. Alterungseffekte werden automatisch kompensiert und eine ausgezeichnete Langzeitstabilität ist gegeben.

Der rel. F.-Sensor wird duch ein einzigartiges Sensor-Coating vor Staub, Schmutz und Korrosion geschützt.

Hohe Messgenauigkeit

Die werksseitige Mehrpunkt CO₂- und T-Justage sorgt für eine hervorragende CO2-Messgenauigkeit über den gesamten Temperatureinsatzbereich.

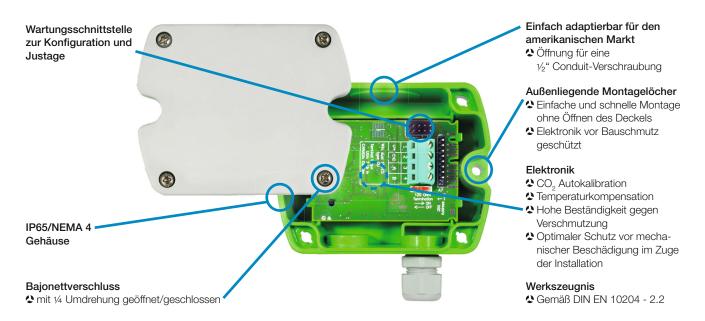
Funktionelles Design

Bei der Kanalmontage strömt eine geringe Luftmenge durch das geteilte Fühlerrohr ins Innere des Messumformers, wo sich die ${\rm CO_2}$ -Messzelle befindet, und wieder zurück. Der rel. Feuchte- und Temperatursensor ist im Fühlerrohr platziert.

Analog- und Digitalausgänge, passiver Temperaturausgang

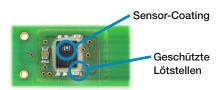
Die CO₂-,-rel. F. und Temperaturmesswerte sowie die berechnete Taupunkttemperatur (Td) stehen auf den Analogausgängen zur Verfügung. Zusätzlich liefert die RS485-Schnittstelle mit Modbus RTU oder BACnet MS/TP Protokoll weitere Parameter wie absolute Feuchte (dv), Mischungsverhältnis (r), Wasserdampfpartialdruck (e) oder Enthalpie (h).

Einfache Konfiguration und Justage

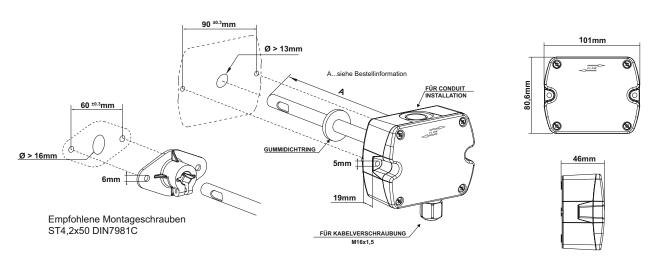

Ein optionaler Adapter und die kostenlose EE-PCS Konfigurationssoftware ermöglichen eine einfache Konfiguration und Justage des AL-IAQ850.

Typische Anwendungen

- Gebäudemanagement
- ♣ Bedarfsgesteuerte Lüftung
- Prozesssteuerung



EIGENSCHAFTEN


SENSOR-COATING

Das eingesetzte Sensor-Coating ist eine hygroskopische Schicht, welche auf die aktive Fläche des Feuchte-Sensorelements aufgetragen wird. Die Beschichtung verlängert im Wesentlichen die Lebensdauer und Messleistung des Sensors in korrosiver Umgebung. Darüber hinaus verbessert es die Langzeitstabilität in staubigen und schmutzigen Anwendungen durch Verhinderung von Streuimpedanzen, welche durch Ablagerungen auf der aktiven Sensorfläche verursacht werden.

EEH210 digitaler rF und T Sensor, im Inneren des Fühlerrohrs.

ABMESSUNGEN

TECHNISCHE DATEN

MESSWERTE

CO ₂		
Messprinzip	2-Strahlverfahren, (nicht-dispersive Infrarot Technologie) NDIR	
Messbereich	02000 / 5000 / 10000 ppm	
Genauigkeit bei 25 °C und 1013 mbar	02000 ppm: < ± (50 ppm +2 % vom Messwert) 05000 ppm: < ± (50 ppm +3 % vom Messwert) 010000 ppm: < ± (100 ppm +5 % vom Messwert)	
Ansprechzeit τ ₆₃	< 100 s bei 3 m/s Luftgeschwindigkeit im Kanal	
Temperaturabhängigkeit, typ.	± (1 + CO2 Konzentration [ppm] / 1 000) ppm/°C für -2045 °C	
Kalibrationsintervall 1)	> 5 Jahre	
Messintervall	ca. 15 s	

TEMPERATUR		
Messbereich	-2060 °C	
Genauigkeit bei 20 °C	±0,3 °C	
Ansprechzeit τ ₆₃	< 50 s	

RELATIVE FEUCHTE		
Messbereich	095 % rF	
Genauigkeit bei 20 °C	± 3 % rF (2080 % rF)	
Ansprechzeit τ ₆₃	< 10 s	

AUSGÄNGE

ANALOGAUSGANG			
CO ₂ : 02000 / 5000 / 10000 ppm	0 - 5 / 0 - 10 V 4 - 20 mA	-1 mA < I_L < 1 mA RL < 500 Ohm	
T Abbildung: entsprechend Bestellinformation rF Abbildung: 0-100 % rF	0 - 5 V / 0 - 10 V	1 mA < IL < 1 mA	
Digitale Schnittstelle Protokoll	RS485 mit max. 32 Busteilnehmern Modbus RTU oder BACnet MS/TP		
Passive Temperatur, 2-Draht Drahtwiderstand (Klemme - Sensor), typ.	T Sensortyp siehe I 0,4 Ohm	Bestellinformation	

ALLGEMEIN

Versorgungsspannung Klasse III	24 V AC ±20 % 15 - 35 V DC		
Stromaufnahme, typ.	15 mA + Ausgangsstrom		
Stromspitze, max.	350 mA for 0,3 s (Analogausgang) 150 mA for 0,3 s (RS485-Schnittstelle)		
Min. Strömungsgeschwindigkeit	1 m/s		
Gehäusematerial	Polycarbonat, UL94V-0 zugelassen		
Schutzart	Gehäuse: IP65 / NEMA 4 Fühlerrohr: IP20		
Kabelverschraubung	M16 x 1,5		
Elektrischer Anschluss	Klemmengröße max. 2,5 mm²		
Elektromagnetische Verträglichkeit	EN61326-1 EN61326-2-3 Industrieumgebung		
Betriebs- und Lagerbedingungen	-2060 °C 095 % r.F. (nicht kondensierend)		

¹⁾ unter normalen Betriebsbedingungen

BESTELLINFORMATION

				AL-IAQ850-	
7	Modell	CO ₂ CO ₂ + T CO ₂ + T + rF	M10	M11	M12
HARDWARE KONFIGURATION	CO ₂ Bereich	02 000 ppm 05 000 ppm 010 000 ppm	HV1 HV2 HV3		
	Ausgang	0-5 V 0-10 V 4-20 mA RS 485	A2 A3 A6 J3	A2 A3 J3	A2 A3 J3
	T Sensor passiv ¹⁾	keiner Pt1000A NTC10k Ni1000, TK6180		kein Code TP3 TP5 TP9	
	Fühlerlänge	50 mm 200 mm	L50 kein Code	kein Code	kein Code
÷	Temperatur	T [°C] T [°F]		kein Code MB2	kein Code MB2
ÄNGE	Abbildung T low	0 Wert - innerhalb des Messbereiches -2060 °C		kein Code SBL value	kein Code SBL value
SETUP ANALOGAUSGÄNGE	Abbildung T high	50 Wert - innerhalb des Messbereiches -2060 °C		kein Code SBH value	kein Code SBH value
	Relative Feuchte / Taupunkt	rF [%] Td [°C] Td [°F]			kein Code MC52 MC53
ETUP	Abbildung rF/Td low	0 Wert - für Td: Innerhalb des Messbereiches -2060 °C			kein Code SCL value
S	Abbildung rF/Td high	100 Wert - für Td: Innerhalb des Messbereiches -2060 °C			kein Code SCH value
SETUP RS485 ⁵⁾	Protokoll	Modbus RTU ²⁾ BACnet MS/TP ³⁾		P1 P3	
	Baud rate	9600 19200 38400 57600 ⁴⁾ 76800 ⁴⁾		BD5 BD6 BD7 BD8 BD9	

- 1) Nicht mit RS485 Ausgang (J3) / T-Sensor Details siehe www.epluse.com/R-T_Characteristics.
- 2) Werkseinstellung: Even Parity, Stopbits 1; Modbus Map und Kommunikationseinstellungen: Siehe Bedienungsanleitung und Modbus Application Note at www.epluse.com/ee850.
- 3) Werkseinstellung: No Parity, Stopbits 1; Product Implementation Conformance Statement (PICS) verfügbar auf www.epluse.com/ee850.
- 4) Nur für BACnet MS/TP.
- 5) Nicht mit Analogausgängen A2, A3 und A6.

BESTELLBEISPIEL

AL-IAQ850-M12HV2A3MB2SBL32SBH140

Modell: $CO_2 + T + rF$ CO2 Bereich: 0...5 000 ppm Ausgang: 0-10 V 200 mm Fühlerlänge: Temperatur: T [°F] 32 °F Abbildung T low: 140 °F Abbildung T high: rF/Td: rF [%] Abbildung rF low: 0 % 100 % Abbildung rF high:

AL-IAQ850-M10HV1A6L50

 Modell:
 CO2

 CO2 Bereich:
 0...2 000 ppm

 Ausgang:
 4-20 mA

 Fühlerlänge:
 50 mm

AL-IAQ850-M12HV3J3P1BD6

Modell: $CO_2 + T + rF$ CO2 Bereich:0...10 000 ppmAusgang:RS485Fühlerlänge:200 mmProtokoll:Modbus RTUBaud rate:19 200Einheit:metric-SI

ZUBEHÖR

Konfigurationsadapter Kabel HA011066

E+E Konfigurationssoftware EE-PCS (Kostenloser Download: www.epluse.com/EE850)

Versorgungsnetzteil V03

AFL196578 – Version Dezember 2019 – Änderungen vorbehalten